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Akstract--Analytical results are presented for the motion of a viscous Newtonian fluid drop in the 
presence of a plane, deformable, interface in the velocity range for which inertial effects may be neglected. 
The zeroth-order approximation for a spherical drop near a flat interface is expressed in terms of 
fundamental singularity solutions for Stokes flow, and used to evaluate the drag on the fluid drop in 
translation either perpendicular or parallel to the interface. The present approximate results for drag are 
in good agreement with exact-solution results where available. The first corrections for the shapes of the 
plane interface and the drop are then determined by reformulating the small deformation problem in terms 
of equivalent boundary conditions on a flat interface and a spherical drop surface. We consider the 
influence of the viscosity ratios, density differences and interfacial tensions (or Bond number and capillary 
numbers) and the drop position relative to the interface, in determining the degree of distortion of the 
plane interface and the fluid drop surface, and the hydrodynamic drag force on the drop. Among the most 
interesting results is the prediction of lateral migration induced by the drop and the interface deformations. 
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1. I N T R O D U C T I O N  

There are many processes in chemical and other branches of engineering that involve liquid-liquid 
or gas-liquid contacting. In many of these cases, the stability of a suspension of drops is of primary 
importance--namely, the ability of the drops to resist coalescence when brought into close 
proximity via a mean flow or by Brownian diffusion. Frequently, the size of the drops involved 
in a close encounter will be comparable, and it is then necessary to solve two- or multi-body fluid 
dynamics problems to understand the interaction process. In other situations, however, we may 
be concerned with the relative motions, either convective or diffusive, of two drops which differ 
greatly in size, or with the motion of a drop near an "unbounded" fluid interface, as in the final 
stages of the gravity-driven separation of an emulsion into two bulk fluids when each of the fluids 
still contains finite droplets of the other. 

As a logical problem for initial investigation of the complicated phenomena inherent in these 
applications, we consider a single fluid droplet moving near a deformable plane interface through 
a quiescent fluid. When a fluid droplet moves in the vicinity of an interface between two immiscible 
fluids, the presence of the interface will affect the drop motion, and the interface and the drop will 
in turn be deformed by the disturbance flow caused by the drop. Three main lines of attack have 
proved fruitful in studying three-dimensional drop deformation in unbounded fluids: the first, 
originating with Taylor (1932, 1934), applies when the distortion from sphericity is slight and the 
familiar technique of domain perturbations can be applied to easily obtain a first approximation 
to the deformed drope shape (cf. Rumscheidt & Mason 1961a, b; Cox 1969; Frankel & Acrivos 
1970; Torza et al. 1972; Barthes-Biesel & Acrivos 1973a, b; Rallison 1980); the second, also 
suggested by Taylor (1964), uses the method of slender-body theory to examine the case where the 
drop is pulled into a thin thread (cf. Buckmaster 1972; Acrivos & Lo 1978; Hinch & Acrivos 1979, 
1980; Brady & Acrivos 1982); and third, numerical techniques have been devised to bridge 
the gap. Rather than solve for the fluid velocity at all points in space, most studies, following 
Youngren & Acrivos (1975, 1976), have used a boundary-integral method to cast the creeping-flow 
equations into an integral form that involves only quantities evaluated on the drop surface (cf. 
Ladyzhenskaya 1969; Rallison & Acrivos 1978; Rallison 1981). 
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We have previously considered the motion of a rigid particle in creeping motion near a plane 
deformable fluid-fluid interface (Berdan & Leal 1982; Lee & Leal 1982; Geller et al. 1986). Berdan 
& Leal (1982) used the domain perturbation technique to study small deformations of an initially 
fiat interface, with the qualitatively important discovery of a previously unknown form of "lateral 
migration" induced by the interface deformation. It should be noted that the situation is somewhat 
analogous to the well-known lateral migration of a drop in shear flow away from a plane wall due 
to deformation of the drop shape (cf. Chaffey et al. 1965; Chan & Leal 1979). Furthermore, 
there is almost certainly an additional lateral velocity component, associated with sedimentation 
of a drop, away from a vertical plane boundary due, again, to shape deformation of the drop. 
Lee & Leal (1982) and Geller et al. (1986) used a boundary-integral technique similar to that 
of Acrivos and coworkers to consider the problem of a rigid sphere in translation normal to 
the interface, without making any a priori assumption about the magnitude of the interface 
deformation. 

For the coalescence phenomena and other applications cited earlier, the problem of interest is 
the motion of a deformable drop in the vicinity of a deformable interface. Relatively little theoretical 
work has been done on this problem. In particular, Bart (1968) obtained an exact analytical 
solution for the drag force on a small spherical drop settling toward aflat interface. More recently, 
two studies have been reported from our group using the boundary-integral technique. Chi & Leal 
(1989) considered the buoyancy-driven translation of a deformable drop normal to a deformable 
interface, while Ascoli et al. (1990) obtained solutions for the approach of a drop to a rigid, plane 
wall. In both of the latter studies, the magnitude of deformation was not limited in any a priori 
way. However, it is difficult from numerical solutions alone to obtain an understanding of the role 
of all of the dimensionless parameters for a problem such as the general drop/interface problem 
which involves three fluids, all of which may be different, and thus two interfaces each characterized 
by a different interfacial tension. For example, the study of Chi & Leal (1989) only encompassed 
the special case of a drop of fluid 1, moving through a second fluid toward an interface with its 
homophase, where there is only a single interfacial tension and a single viscosity ratio and a single 
density ratio. The present paper represents a complementary investigation in which we obtain 
analytic results for the general three-fluid problem, but only for limiting cases where the 
deformation of the drop and the interface are both small. In this limit, both motions normal 
and tangential to the interface are of interest. The motions of a particle or drop due to an 
arbitrarily directed force can be determined in this limit, via superposition of results for motions 
parallel and perpendicular to the interface. Further, the Brownian mobilities of a drop near an 
interface require knowledge of the hydrodynamic resistance for the parallel and perpendicular 
motions. The analysis is formally carried out by the method of domain perturbations, 
in combination with the reciprocal theorem for Stokes flow. The primary thrust of our present 
research lies in: a systematic assessment of the coexisting role of the drop and interface 
deformations on the lateral migration of a drop; and an investigation of the effects of the viscosity 
ratios, the capillary numbers and the Bond number on the drag force and on the distortions of 
the plane interface and the drop. 

2. FORMULATION OF THE PROBLEM 

2.1. Governing equations and boundary conditions 

We begin by considering the governing equations and boundary conditions for a fluid droplet 
which moves in the vicinity of a fluid interface. The fluid interface and the drop surface separate 
three immiscible Newtonian fluids that we denote as fluids 1, 2 and 3. The interfaces between fluids 
1 and 3 and fluids 2 and 3 are both clean, mobile and characterized completely by constant 
interfacial tension, denoted respectively as 712 and 723. The two continuous fluid phases are assumed 
to be quiescent except for the disturbance flow generated by the motion of the droplet. Further, 
the undisturbed interface at z = d is assumed to be fiat, and the drop is supposed to be wholly 
immersed in fluid 2. Figure 1 shows a schematic view of the system for a translating fluid droplet 
near a fluid interface. 
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Figure 1. Schematic sketch of the problem. The instantaneous coordinate of the drop center is x = 0 and 
the undeformed plane interface is represented by z = d. 

The analysis which we consider is predicated on the neglect of inertia effects in all three fluids. 
Thus, we assume that the appropriate Reynolds number is sufficiently small, i.e. 

Ua 
Re = << 1, [1] 

V2 

where U is the translational velocity of the drop and v2 is the kinematic viscosity of fluid 2, and, 
in addition, that the ratios of kinematic viscosity, v m/v 2 and v 3/v 2, are both O (1). The separation 
distance, d, between the drop center and the undisturbed interface is nondimensionalized by the 
radius a of the undeformed drop. 

The appropriate governing equations thus reduce to Stokes' equation and the equation of 
continuity in each fluid (see figure 1), i.e. in dimensionless form, 

V .  u = 0 ,  V .~r = 0 ,  [2] 

with the stress a and pressure p given by 

a, = - p i I  + /z-L (Vui + Vu~) (i = 1, 2 and 3), [3] 
/z2 

in which/z~ is the viscosity of fluid i and u~ denotes the velocity field in fluid i. The characteristic 
variables used in the nondimensionalization of [2] and [3] are uc = U, lc = a and Pc =/z2 U/a.  
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It is convenient for the analysis which follows to choose a moving coordinate system in which 
the drop is at rest with its center of mass at the origin. In the moving frame of reference, a uniform 
streaming flow, U ~ = - U ,  in the creeping-flow limit, is precisely equivalent to translation of the 
drop with velocity U relative to a fixed frame of reference in a quiescent fluid. The boundary 
conditions in the moving frame of reference are 

ul,u2--~ - U  as [ x [ - - - ~  [4] 

and, at the drop surface S, defined by S : r - 1 - f ( O ,  q5, t) = 0 using spherical polar coordinates 

(r, O, q5 ), 1 d f  

[I u* Ils = 0,  n * .  u2 = n * .  u3 = I VS-----~ ' c3--t- [5a,  b] 

and 
1 1 1 [ la .  n* I]s = ~ (V' n*) n* + ~ ( + f ) c o s  0n*. [6] 

The symbol [L I] in [5] and [6] represents the jump across the surface of the drop S from the outside 
to the inside, n * ( = V S / I V S I )  is the outward normal and V.n* is the surface curvature. The 
dimensionless parameter Ca* is the capillary number, Ca* =/22 U/723, and Cg* is the body force 
parameter, Cg* =-122U/ga2(p3-p2).  The body force parameter appears in [6], because the 
equations of motion are written in terms of the dynamic pressure; i.e. the stress a in [6] is the total 
stress minus the hydrostatic pressure contribution. Equation [5b] is the kinematic condition which 
relates the time rate of change of the drop shape function, f (O,  cp, t), to the normal velocities at 
the drop surface, while [6] is the condition of continuity of stress. At the plane interface, represented 
by H : z  - d - r/(x s, t) = 0, we require 

1 @ 
[lul]H=o, n.(u, +U)=n.  (u2+U)= IVH~" &t [7a, b] 

and 
1 1 

[Itr" n l l n=  ~aa (V • n) n + ~gg t/n. [81 

The parameters appearing in [7] and [8] are the unit outward pointing normal vector n from fluid 2 
(i.e. n = VH/[VHI ) ,  and the position vector xs representing points lying in a plane parallel to the 
undeformed, flat, interface at z = d. In our model system, the shape function r/(x~, t) is envisioned 
as distortion from the flat interface, r/(x~, t) = 0, due to the disturbance flow. Further, Ca and Cg 
are dimensionless parameters defined by 

C a - / ~ 2 U  and C g = - - C a -  #2U 
~12 q~ ga2(P2 -- Pl) ' 

which are known, respectively, as the capillary number and the ratio of the capillary number and 
the Bond number q~. It can be seen in [8] that the normal component of the stress difference at 
the interface is balanced by both an interfacial tension force and a buoyancy force, owing to the 
density difference between the two fluids 1 and 2. 

2.2. Solution methodology 

The problem represented by [1]-[8] is, of course, both time-dependent and highly nonlinear, due 
to the fact that f (O,  qS, t) and r/(x~, t) are unknown. Thus, the solution for any instantaneous U 
and drop position will depend on the prior history of the drop motion, as reflected by the interface 
and the drop shapes at the present time. Although this nonlinear interface and drop deformation 
problem cannot be solved exactly (except by numerical methods), it can be solved approximately 
by the method of "domain perturbations" when the deformations of both the drop and the 
interface are asymptotically small. The obvious physical requirement for this condition to be 
satisfied in the creeping-flow limit (i.e. Re << 1) is that either 

Ca* (or Cg*)<<l and Ca (orCg)<<l  [9] 

o r  
1 

E = -3 << 1. [101 
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When either of the conditions [9] or [10] is satisfied, the interface and drop deformations will not 
only be in a quasi-steady state [i.e. t/(xs, t) = r/(xs) and f (0 ,  cb, t) =f(O, q~)], but the magnitudes of 
the deformations will also be asymptotically small. 

In the present paper, we extend the singularity method of Lee et al. (1979) to consider the 
translation of a drop through a quiescent fluid for the asymptotic limit 

1 
E = - ~  << 1. 

As we shall see shortly in sections 3 and 4, the orders of magnitude of the interface deformation 
in this case are O(E 2) and O(E 3) for translations perpendicular and parallel to the interface, 
respectively, while that for drop deformation is O(E 2) for an arbitrary translational motion. In 
the asymptotic limit, E << 1, the problem can be analyzed completely in terms of an asymptotic 
expansion for small E, in which 

f (O, c~ ) = Ezf(')(O, c~ ) + E3flz)(0, ~b) + ' "  [11] 

and 
q ( X s )  = E m q [ 1 ) ( X s )  -[- ~ m +  1 q ( 2 ) ( X s )  -[- " " ' . [12] 

The zeroth-order approximation [i.e. for f(O, ~b)= q(x~)= 0] thus represents the motion of a 
spherical drop near a flat interface. When the velocity and stress fields have been determined at 
the zeroth-order approximation, the normal stress conditions [6] and [8] can be used to determine 
a first nonzero approximation to the deformation of both the interface and the drop. 

Due to the linearity of Stokes' equation and boundary conditions for the small deformation limit 
(i.e. ~ << 1), the solutions of two basic problems (i.e. translation normal or parallel to the interface) 
are sufficient to determine the drop and fluid motions for any arbitrary applied force on the drop. 
Further, in the zeroth-order approximation for f(O, ~b) = q (xs) = 0, the singularity method can be 
simplified to the superposition of fundamental solutions for a point force (i.e. Stokeslet), a potential 
dipole and higher order singularities (e.g. a stresslet, a rotlet, a potential quadrupole etc.) at the 
center of the drop (cf. Chwang & Wu 1975). Thus, solutions for the zeroth-order problem are 
constructed in the following manner. First, we put singularities at the center of the drop which 
satisfy exactly the boundary conditions at the drop surface in an unbounded fluid. The resulting 
unbounded-domain solution does not satisfy the boundary conditions at the flat interface; instead, 
an error of O (c) is generated at the interface. To eliminate this "error", the simple transformation 
rule of Lee et al. (1979) is used to obtain corresponding fundamental singularity solutions that 
satisfy precisely the boundary conditions at the interface. In general, however, these new solutions 
do not satisfy boundary conditions any longer at the drop surface, but induce an error of O (E). 
Additional higher-order singularities must then be included at the center of the drop to cancel the 
induced error of O (E) at the drop surface, and so on. The result of this procedure is an asymptotic 
approximation, in the form of a series in E, that is valid in the limit E ~ 0. The asymptotic 
approximation solution, to the zeroth-order problem for translation of a spherical fluid drop either 
perpendicular or parallel to aflat interface, is then used to calculate the first corrections, f 0)(0, 4)  
and qlll(x~), for the shapes of the fluid drop and the plane interface for each case. 

Let us now turn to the method of determining the deformation-induced lateral migration of a 
drop in translation parallel to an interface. An analytical approach based upon the reciprocal 
theorem of Lorentz (cf. Happel & Brenner 1965) provides the most efficient method because it 
allows the lateral migration velocity to be calculated from the zeroth-order solution, without any 
need to determine the first-order contribution to the velocity and pressure fields in each fluid. The 
analysis was discussed in considerable detail by Chan & Leal (1979) in connection with the problem 
of non-Newtonian and deformation-induced migration of a drop, and will thus be displayed here 
only in outline. According to the reciprocal theorem, 

f A d A ' a . f i =  f A d A . d . u ,  [13] 

where (u, ~r) and (fi, ~) represent the velocity and stress fields corresponding to two creeping flows 
of the same fluid contained by the same bounding surface, A. To apply the reciprocal theorem to 
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the calculation of lateral migration velocity, we must first consider the "so-called" complementary 
problem of the motion of a drop translating perpendicularly to an interface in a quiescent fluid. 
In general, the use of the reciprocal theorem requires that the complementary Stokes-flow problem 
be solved for a drop and an interface of the same shapes as the "real" ones under consideration-- 
which must themselves be calculated from the normal stress balances on the drop surface and the 
interface in the full disturbance-flow Stokes problem of drop motion. In order to simplify the 
application of boundary conditions at the interface and on the drop surface, it is advantageous 
to use the method of domain perturbations to approximate all quantities that are to be evaluated 
at the surfaces of the deformed interface and drop, in terms of equivalent quantities evaluated at 
q(xs) = 0 and f(O, ~b)= 0 using a Taylor series expansion about q(xs)= 0 and f(O, q~)= 0, for 
E << 1. Hence, in effect, we replace the original problem, which has boundary conditions at the 
deformed interface and deformed drop surface, with an equivalent problem, for c << 1, in which 
modified boundary conditions are applied at the surfaces of a flat interface and a spherical drop• 
Although the complementary problem must normally be solved for a drop and an interface of the 
same shapes as the real ones under consideration, the reduction of the full problem to the motion 
of a spherical drop near a flat interface with a set of modified boundary conditions means that 
we can also use the solution for a spherical drop and a fiat interface for the complementary 
problem. 

An expression for the lateral migration velocity U~m can therefore be obtained from the 
reciprocal theorem, by first combining the reciprocal-theorem integrals for the two fluids, with the 
complementary Stokes flow identified as (6, ~) and the disturbance flow generated by parallel 
translation of the drop identified as (u, a), and then applying the modified boundary conditions 
to evaluate the integrands of the combined integrals over S and H that result. The result in this 
case is 

• # = f ~ ,  ~-~Vf(2f+V2f - + f V f }  fi Ulm fS "n*dA --fsI{--  I ~r ]s 'er+Vf'[[al]s+ ) " 

: f0u2  c~u ]3d" 
- -rt -~z ~ • e.. + Vr/• [l~ I]. + ~aa V r/Vrt 

H 

+ [1~ II,:eze.~ ~ -~--z "e~ - u, • V~ +~  '~2"ez" dA. [14] 
H 

It can be noted that the effects of interface and drop deformation on drop motion are simply 
additive, as small corrections to the basic problem of the motion of a spherical drop near a flat 
interface, i.e. the results are thus the migration velocity for a deforming drop near a flat interface, 
plus the migration velocity for a spherical drop near a deforming interface. The expression [14] 
is somewhat complicted, but the lateral velocity at leading order is easily evaluated knowing 
only the first-order shape functions, f<t)(O, dp) and q~(xs), the complementary flow field (6, ~), 
plus the zeroth-order solution (u,a) for translation of a spherical drop parallel to a flat 
interface. 

3. TRANSLATION PERPENDICULAR TO THE INTERFACE 

3.1. Drag on a fluid drop 
Let us begin by considering the translation of a spherical fluid droplet perpendicular to an infinite 

plane, flat, interface, i.e. the complementary problem for determining the deformation-induced 
migration of a drop. In an infinite fluid domain with no external boundaries, an exact solution for 
translation of a fluid droplet is the Hadamard-Rybczynski solution; (e.g. Happel & Brenner 1965). 
The velocity field outside the fluid drop in this solution can be represented as a superposition of 
the fundamental solutions for a point force (i.e. Stokeslet) and a potential dipole, both applied at 
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the center of the drop. For a fluid droplet with viscosity x/~2 (i.e. the viscosity ratio x = [-/3/1[/2) which 
is moving with a constant velocity U = e:, the required singularities are of the form: 

Stokeslet: 43-A (x) Us(X; e:) 

and 
Potential dipole: -¼B(x)  UD(X; e:), 

where Us(X; e:) and UD(X; e:) denote the fundamental solutions for a Stokeslet e, and a potential 
dipole e: located at the center of the drop in an unbounded single-fluid domain (cf. Chwang & Wu 
1975). The parameters A(x) and B(x) are defined as 

B(k)= [15] A ( x ) -  l + x '  l + x  

and clearly depend on the viscosity ratio x. When either x ~ 0 or x ~ oo, these parameters reduce 
to the values for an inviscid gas bubble or a rigid sphere, respectively. 

Since we consider only the limit of E << 1, the solution of the full problem, including the interface, 
is most conveniently obtained via the method of reflections, as explained in some detail by Lee 
et al. (1979). The zeroth-order approximation in this procedure, u(2 °), is the single-fluid unbounded 
domain solution: 

u<:°)(x) = ¼A (~C)Us(X; e~) - ¼BOo)UD(X; %). [16] 

Here, in the notation of u(j ~, the superscript ( j )  indicates the level of approximation in the context 
of the method of reflections. Though the zeroth-order approximation [16] in the procedure exactly 
satisfies the boundary conditions at the drop surface (i.e. continuity of tangential velocity and stress 
plus the zero normal velocity), it does not satisfy boundary conditions at the flat interface. 
However, a first correction u~ I~ which does satisfy these conditions can be obtained by simply 
utilizing the same form [16] as in the zeroth-order solution, but with the fundamental solutions Us 
and UD replaced by the corresponding fundamental solutions for a point force etc. in the presence 
of the flat interface, obtained by the generalized reciprocal theorem of Lee et al. (1979). It is 
convenient to express this solution in the form, u~ °~ + u~ l~, as a sum of the zeroth-order solution 
plus a "correction". Although this combined solution satisfies the interface boundary conditions, 
it now does not satisfy the boundary conditions at the drop surface, and additional singularities 
are needed at the drop center in order to cancel the velocity . (i) field correction u: at the drop surface: 
namely, the interface reflection of the Stokeslet and the potential dipole, both of which are nonzero 
on the drop surface. The preceding two steps, leading to the approximate solution, u~ °) + u~ l~, can 
be carried out for arbitrary E. However, the resulting expression for u(2 I~ at the drop surface is highly 
complicated, and it is not possible for arbitrary E to determine singularities at the drop center which 
precisely satisfy the continuity of tangential velocity and stress and zero normal velocity boundary 
conditions at all points on the drop surface. Instead, we consider the asymptotic limit E << 1, and 
then choose singularities to cancel only the first few terms of u~2 I) at the drop surface, with U (1) 

expressed in powers of E. The leading terms of u~211 near the drop surface, for small E, are 

u~i)(x) = 9A(x)A(2) [_  E . % +  ~2.¼E'x] + O(E3), [17] 

in which 2 is the viscosity ratio (i.e. 2 =/~1/#2) of the two continuous fluid phases 1 and 2. 
The strain rate tensor E has Cartesian components, E 0 = 6~j - 3 6 i 3  c~j3 , with the origin at the center 
of the drop. 

Insofar as [17] is concerned, the presence of the interface is thus equivalent to an induced steady 
streaming flow at O(E) in the direction opposite to that of the drop motion. The term of O(E:) 
in [17] is equivalent to an axisymmetric uniaxial extensional flow with a stagnation point at the 
drop center, and the z-axis as the symmetry axis. The singularities required to cancel the additional 
velocity field u~2~)(x) of [17] at the drop surface can be readily evaluated. We have seen previously 
that a uniform velocity at the drop surface can be generated by superposition of a Stokeslet and 
a potential dipole. It can be shown that an extensional flow of the type represented by the O(E 2) 
term in [17] is generated in an unbounded single fluid by superposition of a stresslet and a potential 
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quadrupole. To counter the terms of O (E 2) in [17], we thus require the superposition of a stresslet 
and a potential quadrupole at the drop center. The resulting velocity field is 

U(2) 1 2. EX = ~-GEx [B(X)UpQ(X; e:, e:) q- 5C(/¢)Uss(X; ez, e:)], [18] 

where GEx is the strain rate of the reflected extensional flow and is given by 

GEX = E 2 9A (x)A (4) [19] 

and the parameter C(~c) is defined as 

1 + ~c" [20] 

Here, UpQ and Uss denote the fundamental solutions for a potential quadrupole and a stresslet 
located at the drop center in an unbounded fluid. Thus, the complete contribution to the velocity 
field that is required to cancel the first two terms of u~ t) at the drop surface is a superposition of 

St°keslet: 3 A(x)Us(X; e")I ~ {9 A(x)A(2)c}~ + [21] 

[20 ] Potential dipole: -¼B(x)%(x ;  ez) A(~)A(2)E} n + O(E 3) , [221 

Stresslet: 2 45 c -~A(x)C(x)A(2)ass(X; ez, eA [23] 

and 

Potential quadrupole: e2 9 A (x) B(x)A (2)upo(x; ez, e~). [24] 

The complete velocity field, u~ °) + u(2 l) + u(22), with u~ 2) resulting from the superposition of [21]-[24], 
now satisfies boundary conditions exactly at the interface and boundary conditions to O (E 3) at the 
drop surface. Higher-order approximations could be obtained by a straightforward continuation 
of the same procedure. However, the solution above is sufficient for present purposes. 

Bart (1968) obtained an exact result for the drag force on a small spherical drop settling toward 
a flat interface between two immiscible viscous fluids, using the eigensolutions of Laplace's equation 
in bipolar coordinates. It is a simple matter to calculate the approximate drag force F3e z on the 
fluid droplet from the present asymptotic solution. The drag ratio, i.e. the drag divided by the 
Stokes drag 6n#zaU, is simply given as 

2 
F3 =A(x) ~ {9A(x)A(2)E}"+O(c3). [25] 

6rcl~2aU n = 0  

In figure 2 the drag ratio [25] is plotted as a function of d, the distance between the drop and 
the interface, for the three values of 2 = 0, 1 and oo. In particular, we choose p~ =/./3 (i.e. x = 4), 
which is relevant to the final phase-separation stages of a liquid-liquid extraction process in which 
droplets of fluid 1 rise towards a stationary interface through a second fluid 2, and droplets of 
fluid 2 settle through fluid 1. The "exact" drag ratios numerically calculated by Bart (1968) are 
also shown in figure 2. There is very good agreement between the two solutions, except in the 
region near d ~ 1. As expected, the discrepancy between the two results becomes larger as the drop 
approaches the interface owing to the poor convergence of the asymptotic solution [25] in powers 
of E. However, a detailed comparison shows that, even for d ~ 2, there is very good agreement 
between the two solutions, and the relative error in the asymptotic solution [25], compared to the 
exact solution of Bart (1968), is < 5% for d >/2.5. It should be noted from [25] that the interface 
effect on the drop becomes stronger with an increase in 2 (or x) since A(2) [or A(r)] is a 
monotonically increasing function of the viscosity ratio 2 (or x). 

3.2. Drop and interface deformations 
When a fluid drop moves near a fluid interface, the fluid in the neighborhood of the drop is 

disturbed. The disturbance generates a stress system which can be resolved into tangential and 



DROP MOTION NEAR A DEFORMABLE INTERFACE 6 0 5  

normal stresses acting at the plane interface and the drop surface. The tangential stresses are 
assumed to be transmitted undiminished across the interfaces and thus establish a system of velocity 
gradients in the vicinity of the interfaces. The normal stresses, on the other hand, are discontinuous 
at the plane interface and the drop surface, and generate normal stress differences across the 
corresponding interfaces that can only be balanced by capillary or body forces through interface 
deformation. The zeroth-order solutions obtained in the preceding section 3.1 for a spherical drop 
[i.e. f(O, q5) = 0] translating near aflat interface [i.e. r/(Xs) = 0] satisfy the conditions of continuity 
of the tangential velocity and stress at the undeformed interfaces, as well as zero normal velocity. 
However, they do produce an imbalance in the normal stress components across the plane interface 
and the spherical drop surface. Thus, to calculate a first correction to the interface and the drop 
shapes, it is necessary to solve the differential equations [6] and [8] with the normal stress differences 
[la" hi] evaluated using the zeroth-order solution. 

The normal stress difference [Is.  n* I]s across the drop surface S can be evaluated from 
the zeroth-order solution and expressed in terms of the Legendre polynomial of the second 
order, P2: 

16 + 19K 
[Io" n*. n* I]s =pin __pO~ + 16GEx P2(COS 0), [26] 

16 + 16K 

where 0 is the spherical polar angle measured from the z-axis, i.e. the axis of symmetry in the 
induced straining flow with strain rate GEX given by [19]. In [26], pin  denotes the pressure at the 
interface inside the drop phase and p ~ is the reference pressure far from the drop. This pressure 
difference pin __p~, is precisely balanced by interfacial tension for the drop in its undeformed 
spherical shape (S:r - 1 = 0), i.e. 

2 
pm _pO~ = . [27] 

Ca* 

It is thus obvious, from [19], [26] and [27], that the first correction to the drop shape, f(O, c~), is 
O(E 2) and the independent of the azimuthal angle ~ owing to the axisymmetry of the problem. 
The differential equation for the shape function f (0)  at O (E :) in the asymptotic form of [11] follows 
directly by substitution of [26] and [27] into [6], noting that n* = VS/I VS I, so that 

[ -~0 ] 9 16+19Kp2(cosO). [28] 1 1 sin0 f(~) +2 f (~ )= - C a*A (x )A (2 ) -~ .  16+16K 
sin 0 d0 
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Figure  3. Var ia t ion  of  d rop  de fo rmat ion ,  De/Ca*,  as a 
funct ion  of  viscosi ty ra t ios  2 ( = r )  for no rma l  t rans la t ion:  
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Equation [28] can be solved in terms of  the Legendre polynomial P2, subject to the conditions 

f ' d(cos O) = << 1, f"~(O) 0 for max[e2f°)(O)[ 
- 1  

since the characteristic length a has been set equal to the radius of the "equivalent" spherical drop, 
and 

f l c o s 0 . f t l ) ( 0 ) d ( c o s 0 ) = 0  for maxleZfl°(0)[  << 1, 
- I  

since the origin of the coordinate system has been chosen to coincide with the center of mass of  
the drop. The resulting solution for the drop shape S(r, O) is 

S(r, 0): r - 1 -f(O) = 0, [29] 

where 
9 16+ 19x 

f(O) ~ e z f ( ' ) ( 0 )  = --EZCa * A(x)A(2)  P2(cos 0). [30] 
8 16 + 16x 

The shape of a fluid drop translating perpendicularly to a plane interface is thus an oblate spheroid 
with the axis of revolution parallel to the direction of motion. It should be noted that the value 
of  

9 16+ 19x 
A(x)A(2)~. 16+ 16~c 

is a monotonically increasing function of 2 and x, and varies from 0.5 to 1.336 for all ranges of 
2 and x(~>0). Further, the first correction to the drop shape, f(O), is of O(e2Ca*). 

A convenient method for expressing the result for drop deformation is to measure l, the length 
of the drop in the direction of the major axis, and b, the breadth in the direction of the minor 
axis of the ellipsoid, see figure 3. Following Taylor (1934), it is useful to define a dimensionless 
deformation parameter, De, as 

l - b  
D e -  l + b" [31] 

This parameter De vanishes for a spherical drop, and is asymptotically unity for a long slender 
drop. The parameter De, in this case, can be easily evaluated from [19], [30] and [31]: 

l - b  
De = - -  = 

l+b 

16 + 19K 
3Ca*GEx 16+ 16~ 

16 + 19~ 
1 --Ca*GEx 16+ 16~ 

16 + 19x 
,~ 3Ca*GEx 16 + 16K as Ca*e2--*0. [32] 

In figure 3, the dimensionless parameter De is illustrated as a function of the viscosity ratios 2 and 
~c, with the condition )~ = ~c, for three values of the separation distance, d = 1.1, 2 and 3. As 
expected, for a given value of the capillary number, Ca*, the magnitude of the drop deformation 
(De), due solely to the presence of an interface (i.e. De ---, 0 as d ~ oc), is increased with an increase 
in )~ (or x), and this effect is a strong function of the drop position relative to the interface. 

Let us now turn to the interface shape, which can be obtained using the normal stress jump 
condition [8]. In order to proceed analytically, we assume that the deformation, q(xs), is small, 
and that it can be represented asymptotically in the form [12], where e is the small parameter of 
the problem, as defined in [10]. It is convenient for formulation purposes to utilize a cylindrical 
coordinate system (p, ~b, z), with z = d corresponding to the plane of the undeformed interface and 
the z-axis passing through the center of the drop at the origin. 
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The normal stress imbalance across the interface H at z = d, for translation of the drop normal 
to the interface, can be evaluated from the zeroth-order velocity and pressure fields, i.e. 

[la n n l ] . = c  2 9A(x) • • + O ( ¢ 3 ) .  [ 3 3 ]  

It can easily be seen, from [33], that the first correction of the interface shape is O (E2), i.e. m = 2 
in the asymptotic expansion of  [12]. We now proceed to solve [8] for the shape of the interface, 
t/(Xs) at O(E2), i.e. t/(°(×s). After combining [33] with [8] and [12], we obtain the following 
differential equation in cylindrical coordinates for the correction function ~°~(xs): 

9A (~c) Ca 
V2/'I(I)(Xs) -- t~(1)(Xs) = ( P 2 )  5/2' ~ y + l  [34] 

where • is the Bond number. 
The solution of[34] is straightforward and may be obtained either by use of the Green's function or 

by the variation of  parameters technique. The resulting solution for the shape of the interface H is 

H : z  - d - r/(Xs) = 0, [35] 

where 

[ f; 1 = 9¢2Ca A(x)  I0(~/2p)  ~2 5/2 | / r 2  "~5/2 d~  , [36] 

in which I0 and K0 are the modified Bessel functions of order 0 of the first and second kinds, 
respectively. Equation [36] indicates that, up to the first correction of the interface shape at O (E2), 
the interface deformation is i n d e p e n d e n t  of  the viscosity ratio 2 of  the two continuous bulk fluids, 
and only a weakly increasing function of  the viscosity ratio ~c between the drop and the continuous 
fluid phases. Specifically, A (~c) varies from -} to 1 for the entire range of ~ 1> 0. It is also noteworthy 
that, since the term in square brackets in [36] is O(1) for n o n z e r o  Bond numbers, i.e. 

Ca g a 2 ( p 2  - P l )  
- - > 0, [37] 

Cg ~)12 

the magnitude of  the drop deformation is O(e2Ca). 
Let us analyze the solution [36] in some detail by considering the relative effectiveness of  the 

interracial tension forces and the gravity forces in restricting the degree of interface deformation. 
In the differential equation [34] for the interface shape function, r/(Xs) at O (c2), gravity acts directly 
on the degree of  displacement from the undeformed shape, while the effect of interracial tension 
is an indirect consequence of  limiting the curvature of  the interface. The obvious parameter for 
investigation of this question is ¢~, a measure of the relative magnitude of the two forces. Figure 4 
shows the maximum displacement, r/ . . . .  which occurs at p -- 0, as a function of q~, for a viscosity 
ratio x = l, and a dimensionless distance d = 3 between the drop center and the plane (z = d) of 
the undeformed interface. In this plot, we carried out calculations for three fixed values of  the 
capillary number, Ca = 0.01, 1 and 100, in order to make comparisons between the results for 
different values of  q~ as meaningful as possible. It can be seen, from figure 4, that the magnitude 
of  the interface distortion is remarkably sensitive to 4, particularly in the limit of q~ --~ 0 (i.e. 
Pl "-* P2)" This is a consequence of  the fact that the gravity force due to the density difference is 
much more effective than the surface tension in restoring the interface to a flat configuration, as 
previously indicated by Lee & Leal (1982). In figure 5, the maximum displacement, r/ . . . .  is plotted 
as a function of the separation distance, d, for a capillary number Ca = 1, a viscosity ratio ~c = l, 
and three values of the Bond number ¢~ = 0.01, 1 and 100. It is obvious from figure 5 that the degree 
of interface deformation rapidly increases as either the drop approaches the interface or as ¢~ 
decreases. The limiting case of  q~--~ 0 corresponds to surface-tension-dominated deformation. 



608 S.-M. YANG and L. G. LEAL 

104 101 

Ca -I00 

102 ~ 100 

100 10-1 

10 -2 10-2 

i0 -4 10-3 

10-6 I I 10-4 
10 -3 10 0 10 3 

Figure 4. Maximum displacement, tlraax, as a function of the 
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Figure 5. Maximum displacement, ~/ .... as a function of the 
separation distance, d, between the drop center and 
the interface for normal translation: - - - ,  for the exact 
numerical integration of [36]; . . . .  , for the asymptotic 

results of [39]. 

In the earlier studies of  interface distortion via spontaneous fluctuations, Buff et al. (1965), 
Jhon et al. (1978), Zielinska & Bedeaux (1982) and Yang (1985) have noted that the magnitude 
of  interface fluctuations diverges logarithmically in the limit Ap --~ 0 with 7~2 = O (1), i.e. • --~ 0 with 
Ca = 0(1). This weak divergence is related to the fact that, in the classical hydrodynamic result, 
finite stable capillary waves must always exist if a nonuniform density distribution exists. In this 
limit, ¢~ --* 0, the asymptotic behavior of  the solution [36] is simply given as 

r/(xs) = 3e 2 Ca A(x )  In 
~t12 
p2 I12 

1-t- ~--f + 1 

= O ( C a l n ~ )  as ~---~0, [38] 

for fixed E. Thus, the interface displacement has a log singularity if ¢ ---* 0 with Ca = O(1), i.e. 
Ap - * 0  with 7,2 = O(l) .  It is evident, however, that r/(Xs) is bounded and O(Ca  In Ca) even when 

= 0 with Cg = O(1), i.e. yl2---~ oo with Ap = O(1). The boundedness of  t/(xs) for this case is also 
true of  thermal fluctuations of  a fluid-fluid interface, as noted in Yang (1985). 

In the gravity-dominated limit, i.e. • --~ oo, the shape function is given by 

r / (xs )~e  2 9A(K)Ca as q~--.oo. [39] 
(~22+ 1)5/24 

Thus, the magnitude of  interface distortion is independent of  the interfacial tension 7~2 and depends 
only on the density difference. In figures 4 and 5, the asymptotic approximation [39] for the 
interface deformation is shown for comparison with the exact numerical integration of  [36]. It can 
be seen that the asymptotic form provides an excellent approximation,  even for • ~ l, and the two 
results are almost exactly coincident for • >/100. 

4. T R A N S L A T I O N  P A R A L L E L  TO T H E  I N T E R F A C E  

4.1. Drag on a fluid drop 

We now turn to the case of  a fluid drop translating with velocity U = ex parallel to an infinite 
plane fluid interface, which is located at z = d. The solution in an unbounded fluid, i.e. the 
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Hadamard-Rybczynski solution, is simply the superposition of a Stokeslet and a potential dipole 
both oriented in the direction of motion, as noted in the previous problem, i.e. 

u+°)(x) = ¼A (X)Us(X; e+) - ¼B(X)UD(X; ex), [40] 

in which A(x) and B(x) are defined in [15]. 
As is the preceding example, the first correction, u~ °) + u~ ~>, for the presence of the interface does 

not satisfy the boundary condition at the drop surface, because the interface reflection utl)(x) is 
nonzero at the drop surface. Following section 3.1, we examine the leading terms of the reflected 
velocity field at the drop surface as a power series in E: 

u['>(x) = E • ~A (x)D(2)ex + / ' (4 ,  x) -x, 

where the parameter D(2) is defined as 
2 ~ - 2  

D(2) = 1 + 2 '  

and the second-order shear-rate tensor/ '(4,  x) is given by 

0 
r ( L  ~) = r,: = E29~(~)  0 

-A(2) 
o °!'1 0 

0 

[41] 

[421 

[43] 

Potential quadrupole: - ~ B(x) [Ft3 Uao (x; ex, e.) + r31UpQ (x; e:, ex) ]. [48] 

From this solution, we can easily determine the hydrodynamic force F~ e+ exerted on a fluid 
droplet located at an arbitrary point near an interface. The drag ratio (the drag divided by the 
Stokes drag 6~zlz2aU) is simply given as 

2 
F------L~ = ACx) ~. { -9A(x)DC2)E}"+ O(E3). [49] 

6np2aU n=0 

and 

Stresslet: 5 - -  ~'(FI3 + I"31 ) C ( x )  Uss (x ;  ex ,  ez)  [47] 

It can be seen from [41] and [43] that the presence of the interface in this case is equivalent in its 
effect on the motion of the drop to a steady streaming flow at O (Q parallel to the interface, and 
a linear shear flow at O (E z) either normal or parallel to the interface. 

In order to satisfy the conditions of continuity of velocity and tangential stress and zero normal 
velocity at the drop surface, we need additional singularities at the drop center that produce a 
velocity field at the drop surface of opposite sign. For the term of O (E), a Stokeslet and a potential 
dipole are required. The singularities required to counter the O (E 2) contribution can be evaluated 
by determining the corresponding solution for the linear shear flow in an unbounded fluid domain. 
It can be shown that a stresslet and a potential quadrupole are necessary to produce such flows 
in an unbounded single-fluid domain. Thus, 

u~?>s. = - G 3 [ { B ( x )  upo(x; ex, e,) + ~C(x)Uss(X; ex, ez)] 

-F3,  [{B(x) Upo(X; e,, e+) + { C(x)Uss(X; e:, ex)], [44] 

in which the reflected shear components/`13 and F31 are defined in [43]. 
Consequently, for the translation of a fluid drop with viscosity #3 (=  x/~2) parallel to the interface, 

the singularities required at the center of the drop through O(E 2) are: 

[;0 ] Stokeslet: ¼A(x)Us(X; ex) {-~A(K)D(2)E} n + O(E 3) , [45] 

Potential dipole:--¼B(X)UD(x;e.OL=~{--~A(~)D(2)E}n+o(E3)I,  [46] 
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When x --, ~ ,  [49] reduces to the drag ratio for the case of a solid sphere, and is identical with 
the results of Lee et al. (1979) and Yang & Leal (1984) to O(e2). It may be seen from [49] that 
there exists a critical viscosity ratio 2 equal to 2/3, above which the drag force on the fluid droplet 
in the presence of an interface is larger than that in an unbounded infinite fluid. For 2 < 2/3, the 
drag is less than it would be in an infinite fluid. The critical viscosity ratio (2 = 2/3) is independent 
of the viscosity ratio x and the drop position relative to the interface. In many respects, the results 
are similar to those for parallel translation of  a solid sphere obtained by Lee et al. (1979) and Yang 
& Leal 0984). O'Neill (1964) calculated the drag ratio for the motion of  a solid sphere parallel 
to a plane solid wall (i.e. 2 -- ~c --~ ~ )  using an eigenfunction expansion in bipolar coordinates. 
The result of [49] is plotted in figure 6 for the same set of  parameters as in figure 2. Also shown 
for comparison are the corresponding drag ratios determined by O'Neill (1964). As mentioned 
previously, we presume ~ << 1 in the derivation of [49]. Thus, for e << 1 (i.e. d >> 1), the asymptotic 
solution [49] coincides almost exactly with O'Neill's result, which is the exact solution for the 
translation of a rigid sphere parallel to a solid wall. Even for d ,~ 1.5, the approximate solution 
shows reasonably good agreement with the exact solution. Indeed, the relative error is within 3.9% 
fo rd~>  1.5. 

The interface-induced rotation of the drop can be evaluated from the magnitude and 
orientation of the reflected shear flows. The angular velocity of the spherical fluid drop is 
equal to 

1 3 ~=2 (r'~-r~')e-'=E~A(~) " l+, ; .  ey+O(ES)" [50] 

This rotation can be viewed as a consequence of two different mechanisms: one is the dynamic effect 
due essentially to the difference in the shear stress above and below the drop; and the other is due 
primarily to the kinematic condition (i.e. zero normal velocity) at the interface. It will be noted 
that, when 2 --~ ~ ,  there is no term of O(E 2) in f l  for the entire range of x(>~0). 

4.2. Drop and interface deformations 

We begin with the shape deformation of the drop in translation parallel to the interface. It 
is well-known that the shape of a fluid droplet translating in an unbounded single-fluid domain 
is spherical, and thus the shape deformation is due solely to the presence of the interface. An 
analytical approach similar to that outlined in section 3 provides the most efficient method of 
determining the drop deformation. However, the deformed drop shape in translation parallel to 
the interface is not axisymmetric, as in the normal translation, owing to the asymmetry of the 
problem. 

The velocity and stress in the neighborhood of the surface of a nearly spherical drop can be 
evaluated approximately by utilizing the corresponding solution for a spherical drop in translation 
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F i g u r e  6. D r a g  r a t io  as  a f u n c t i o n  o f  t he  s e p a r a t i o n  d i s t ance ,  d, b e t w e e n  the  d r o p  c e n t e r  a n d  the  i n t e r f ace  
fo r  pa ra l l e l  t r a n s l a t i o n :  - - ,  for  2 = x - - *  oo; . . . .  , for  2 = x = 1; . . . .  , for  A = ~ = 0; m a r k e r s  a re  

the  c o r r e s p o n d i n g  e x a c t - s o l u t i o n  resul t s  o f  O ' N e i l l  (1964).  
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parallel to a flat interface. The normal stress difference across the drop surface S in the equatorial 
plane for a slightly deformed drop is 

16 + 19x 
[Itr • n * .  n*l]s =pin _ p ~  + 4(Fi 3 + F31) _ _  cos 2~m , [51] 

16 + 16X 

where ~b m is the polar angle in the two-dimensional equatorial plane, cf. figure 7. Since the pressure 
difference p i , _ p ~  of O(1) is precisely balanced by the surface tension of the undeformed 
(spherical) drop (i.e. S: r - 1 = 0), the drop deformation, which is O (E2), results from the reflected 
linear shear flow with shear rate FI3 or F3~ either normal or parallel to the interface. It should be 
noted that the principal axes for the rate of strain (i.e. principal axes of distortion) generated by 
the stresslet and the potential quadrupole in [44] lag by the angle ~t/4 behind the x, z-axes. The 
normal stress difference has a maximum positive value when ~bm = 0 and a maximum negative value 
when 4),, = re/2, corresponding to the principal axes of distortion shown in figure 7 [note that 
F~3 + F3j ~< 0 and is O(E2)]. When F13 + F31 is nonzero, the drop is deformed in such a way that 
the stress generated by the stresslet and the potential quadrupole is balanced by the interfacial 
tension, i.e. the curvature of the drop changes so as to satisfy the condition [6] for equilibrium. 
It can be shown that for small deformations this condition is satisfied when the equator of the drop 
surface S assumes an ellipsoidal form given by the polar equation 

where 

S:r  -- 1 --f(q~m) = O, [52] 

16 + 19x 
f(c~,,) = - Ca* (F,3 + F3,) cos 2~bm. [53] 

16 + 16tc 

The dimensionless deformation parameter, De, in this case, can be easily obtained from [43], [52] 
and [53], and is given by 

l - b  9 16+ 1%: 
De = l + b = EZCa*A(x)B(2)  16' 16+ 16K' [54] 

in which the functions A and B are defined in [15]. It can easily be seen that the magnitude of drop 
deformation is of O(E2Ca *) and the drop remains nearly spherical in the present asymptotic limit 
of E << 1 with Ca* = O (1). The asymptotic limit ensures that the principal strain rate of the interface 
reflections is sufficiently small that ultimately the distortion is limited by the relatively strong 
surface tension and has inter alia a very weak dependence on the viscosity ratio x. In this weak 

(2) 
U2,sH(X ) = ~13 Zex Z 

Controction 

/ 
X== 
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(2) u2,s.(x) =F3~x ~ 
Figure 7. Coordinate systems for drop deformation in translation parallel to the interface. The principal 

axes of  distortion lag by the angle - r t / 4  behind the x, z-axes. 



612 S.-M. YANG and L, G. LEAL 

flow limit, the interface-induced rotation is small enough, as noted in [50], to allow the drop 
sufficient time to accommodate its shape to the changing stress. Under these circumstances the 
principal axis of the drop is aligned with the direction of the principal rate of strain, i.e. the angle 
between the principal axis of the drop and the positive x-direction is - r t /4 ,  as illustrated in figure 
7. It is known that the lateral position of a spherical drop in a Newtonian fluid at zero Reynolds 
number is f i x ed  for all times by its value at some initial instant• As we shall see shortly in section 
4•3, however, the introduction of reflected-flow-induced asymmetry in the drop shape and 
orientation relative to the interface in a bounded flow domain may lead to lateral migration of the 
drop in a direction normal to the interface, even for Newtonian fluids at zero Reynolds number. 

In figure 8 the dimensionless deformation, De, is plotted as a function of the viscosity ratio 2 
with the condition of 2 = x for three values of the separation distance d = 1.1, 2 and 3. The 
qualitative dependence of drop deformation on the viscosity ratio is similar to the case of normal 
translation to an interface• It may be noted that, when 2---* 0, there is no term of O(E 2) in De. 
Indeed, the distortion effects produced by the reflected shear components, Fj3 and F3t  , a r e  exactly 
balanced up to O (c 2) and the drop in translation parallel to a free boundary (i.e. 2 ---, 0) remains 
spherical, irrespective of the viscosity ratio x between the drop and the continuous fluid phases. 

Let us then consider the interface shape for translation of a fluid drop parallel to the plane, z = d. 
Since the velocity and pressure fields have been determined from the zeroth-order solution to the 
complementary problem for translation of a spherical drop in the presence of a f lat  interface, the 
normal stress condition [8] can again be used to determine a first approximation to the deviation 
of the interface shape from flat. In the asymptotic limit of ~ << 1, we obtain a normal stress 
difference for a fluid drop in parallel translation as follows: 

[[~r n ' n l ] ,  (3 9 h ( x ) x  • = + 0 (~ 3). [55]  

It can be noted that the first correction to the interface shape in this case is O(E3), i.e. m = 3 in 
the asymptotic expansion of [12]. After combining [55] with [8] and [12], we have 

V2t/(l)(xs ) _ ~(i)(xs ) = 9A (x) Ca x 

for the first-order correction function t/~)(xs). This partial differential equation, expressed 
in cylindrical polar coordinates (p, 4~, z) with x = p cos4~, can be solved via separation of 
variables and variation of parameter techniques. The resulting solution for the shape of the 
interface H is 

H :z - d - ~?(x~) = 0, [571 
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Figure  8. Var ia t ion  o f  d r o p  de fo rma t ion ,  De /Ca* ,  as a funct ion o f  viscosity rat ios 2 ( =  x)  for parallel  
t ranslat ion:  - - ,  for d = 1.1; . . . .  , for d = 2; . . . .  , for d = 3. 
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where 

rt(x0 ~ E3r/"~(x~) 
9A (x) Ca x 

P l fp ~ ~2K 1 (41/2~) 
,,(~,/2p) (~z  + 1) 5/z d~ + Kl(~l/2p) ~2 5/2 d~ [58] 

~ + l  

where I~ and K~ are the modified Bessel functions of order 1 of the first and second kinds, 
respectively. 

As a fluid drop moves forwards, fluid will be pushed outwards and away from the boundary 
at the front, whereas at the rear fluid will be pulled in toward the drop. This implies an asymmetry 
in the shape of the plane interface, as sketched in figure 1. Although the interface shape is 
fundamentally different from that obtained for motion normal to the interface, the results are in 
many respects qualitatively similar. First, the degree of deformation again increases as the drop 
moves closer to the interface. Second, the ratio of viscosities, 2, across the plane interface has no 
effect, to O(E3), on the degree of deformation, which is a weak function of the viscosity ratio x 
between the drop and the continuous fluid phases. Third, and finally, a density difference across 
the interface is much more effective than interfacial tension at restricting interface deformation. 
It is evident that surface tension allows a very broad deformation with small curvature for small 
values of 4. In this limit, q~ ~ 0 (i.e. in the limit of surface-tension-dominated deformation), 
however, the solution for q(x 0 in the present development, remains perfectly well-behaved: 

3CaAOc)xd I d ] 
q(Xs)  "~ p2 1 ( p 2  + d2)1/2 • [59] 

Unlike the problem of drop motion normal to the interface, r/(x~) does not have log singularity 
in the limit of • - -*0  with Ca = O(1). In the gravity-dominated limit, i.e. q~ ~ o% [58] yields 

r/(xs)~c 3 9CaA(x)x as q~---~oo. [60] 

+1 q~ 

Thus, the degree of interface distortion is magnified with a decrease in the density difference Ap 
between the two continuous fluid phases. Plots which illustrate these conclusions are not included 
here due to the qualitative similarity in the magnitude of the same effects for the case of motion 
normal to the interface. 

4.3. Lateral migration 
Let us now turn to the problem of drop migration in a Newtonian fluid due to flow-induced 

deformations of the interface and the drop. The basic idea is to consider each of the possible effects, 
i.e. deformations in the shapes of the interface and the drop, as small corrections to the basic 
problem of the motion of a spherical drop in the vicinity of a flat interface. Under these 
circumstances, as noted in [14], the effects on drop motion are simply additive at first order and 
can be considered independently. With the first corrections, q°~(xs) and f°)(O, c~), for shapes of 
the interface and the drop, we can use the reciprocal theorem outlines in section 2 to determine 
the deformation-induced lateral migration of the drop in translation parallel to the interface. It is 
evident, from [14], that the evaluation of migration velocity at first order requires only the shape 
functions, q,I and fo~, the zeroth-order disturbance velocity and stress fields (u, a) obtained in 
section 4.1 for parallel translation and the velocity and stress fields (6, 8) for a "complementary" 
Stokes problem. The latter is simply the translation of a spherical drop perpendicular to a flat 
interface--i.e, precisely the solutions already calculated in section 3.1. The order of magnitudes 
of the integrands in [14] can be obtained using the estimates for (u, a) and (fi, 8) in each fluid, 
evaluated on the drop and the interface. A careful examination of the integrals over the undeformed 
interface, H, and the drop surface, S, in [14] shows that the magnitudes of the migration velocities 
induced by the interface and the drop deformations are the same and O(c6). Thus, the lateral 
migration velocity at first order can be determined completely by considering the motion of a 
spherical drop near a slightly deformed interface and the motion of a slightly deformed drop near 

MF 16/4---E 
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a flat interface. The situation is somewhat analogous to the lateral migration of a drop in shear 
flow toward or away from a plane, rigid, wall due to the combined effects of slight non-Newtonian 
rheology, weak inertia and small deformations in shape (cf. Chan & Leal 1979). 

By substitution of the corresponding velocity and stress fields into [14], we determine the 
dominant contributions to the lateral velocity, U~m: 

where 

Ul~m = 

and 

Ulm= 

Ulm = UI D "~ Ulm, [61] 

9Ca*e 6 r 2 z ( 2 + 3 2 )  -] I ( 2 + 3 x ) 2 ( 1 6 + 1 9 x ) ( 5 4 + 9 7 x + 5 4 x 2 ) ]  
!,146,880 I -0-+)~3~ _]  (1 +~)5 "e :+° (~7)  [62] 

4 ~ k ~] _St ~ .e: 

xIo~r I°(O'"2P) fp~ ~2K'(O'li~ K°(Oil2P) fi ~2II(O'12~) 1 /[-p~-----~-3 (2 d~ d( dR + O(c7). [63] 

It can be seen that both the separate contributions, Ui D and Ulm , from the deformations of the drop 
and the interface represent migration away from the interface. 

The contribution U~Dm to the lateral migration is due completely to the reflected shear flow, F • x 
in [41], by the presence of a flat interface. The interface reflections induce asymmetry in the drop 
shape, relative to either the direction of the motion or, equivalently, to the interface, which in turn 
leads to the lateral migration of the drop in a direction normal to the interface. Chaffey et al. (1965) 
and, more recently, Chan & Leal (1979), considered the motion of a deformable drop in a simple 
shear flow near a solid wall using the small deformation theory. They found that the drop would 
migrate away from the wall, in apparent qualitative agreement with the experimental observations. 
By comparison, the factor representing dependence on the viscosity ratio x given by Chan & Leal 
(1979) is 

(16 + 19x)(54 + 97x + 54~c 2) 
(1 + ~c) 3 

so that both theories predict a qualitatively similar weak dependence on the viscosity ratio x. 
However, the migration velocity, U~ given by [62], has a relatively strong dependence on the 
viscosity ratio 2. In particular, when 2 ~ 0, there is no term of O (c 6) in o Ulm. Indeed, as noted in 
section 4.2, the drop in translation parallel to a free boundary (i.e. 2 --~ 0) remains spherical and 
the lateral position is fixed for all times by its value at some initial instant. It may be noteworthy 
that the magnitude of the migration velocity predicted by Chan & Leal (1979) for a drop in a simple 
shear flow is O(c2), which is asymptotically large relative to the lateral migration, Ut D of O(e6), 
for the drop translation parallel to a flat interface. This difference can be explained by the weak 
reflected shear flow of O(E 2) in [41] induced by the parallel translation. 

Let us now examine the contribution Ulm, which is due solely to hydrodynamic interactions 
between a spherical drop and a deformable interface. The dependences on the viscosity ratios, 
2 and h:, are qualitatively similar to the contribution of drop deformation, i.e. weak dependence 
on K and relatively strong dependence on 2. Indeed, when 2 --, ~ ,  we see that there is no term 
of O (E 6) in Ulm and the "very viscous" upper fluid has no direct effect on the lateral migration of 
a spherical drop. A detailed calculation of integrals involved in [63] shows that the contribution 
Ulm to the lateral velocity is a monotonically decreasing function of O, and decreases asymptotically 
as I /0 in the limit of • ~ oo. 

5. CONCLUSIONS 

The creeping motion of a fluid drop near a fluid-fluid interface has been studied using the 
standard method of reflections based on the representation of solutions to Stokes' equation in terms 
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of the fundamental singularities for Stokes flow. We have considered an asymptotic limit, E << 1, 
so that the present results are concerned with circumstances in which the interface and drop 
deformations are both small and dependent solely upon the instantaneous conditions. The small 
deformation problem is reformulated in terms of equivalent boundary conditions on aflat interface 
and a spherical fluid drop; this allows a separation of the arbitrary translation problem, into 
components parallel and perpendicular to the undeformed interface. 

When a fluid drop translates near an interface, we have shown that it is necessary to modify the 
strength of the Stokeslet and potential dipole singularities at the drop center, as well as add a 
stresslet and a potential quadrupole through terms of O(E2). The theory yields the hydrodynamic 
drag force on the drop in translation near an interface for arbitrary viscosity ratios which is in very 
good agreement with exact-solution results in the region of d >> 1. When a fluid drop approaches 
more closely to the interface, i.e. when d ~ 1, an accurate result would require higher-order 
singularities such as Stokes quadrupoles and potential octupoles at the drop center. 

The first corrections for the shapes of the plane interface and the drop have been determined 
and used to calculate the migration velocity of a drop in translation parallel to an interface. Our 
calculations have shown that the orders of magnitude of interface deformation are O (e2) and O (e 3) 
for translation perpendicular and parallel to the interface, respectively, while the magnitude of drop 
deformation is O (c 2) for an arbitrary translational motion of a fluid droplet. The analysis predicts 
migration away from the interface with a velocity of O (E 6). We have also investigated in detail the 
effects of the viscosity ratios, the capillary numbers and the Bond number on the distortions of 
the plane interface and drop shapes, and on the lateral migration of the drop. 
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